Unit I Place value within 1,000,000

In this unit we will ...

- ★ Find the value of each digit in numbers to 1,000,000
- ✓ Partition numbers in different ways
- ★ Compare and order numbers up to 1,000,000
- ★ Represent numbers in different ways, including with Roman numerals

In Year 4, we used a place value grid and counters to represent numbers. What number does this show?

We will need some maths words. Which of these have you met before?

ones (Is)

tens (IOs)

hundreds (100s)

thousands (1,000s)

ten thousands (10,000s)

hundred thousands (100,000s)

more than (>)

less than (<)

place value

partition

estimate

We will also use part-whole models and number lines. What number do these both represent?

Unit 2 📴 Place value within 1,000,000 2

In this unit we will ...

- ✓ Further understand the value of any digit in a number up to 1,000,000
- ⋠ Identify the position of a number on different number lines
- ✓ Compare and order numbers to 1,000,000
- ₹ Round numbers to the nearest 10, 100, 1,000, 10,000 and 100,000

We need to be able to extend the place value grid to include millions.

М	HTh	TTh	Th	Н	Т	0

We will need some maths words. How many of these can you remember?

tens (IOs)

hundreds (100s)

thousands (1,000s)

ten thousands (10,000s)

hundred thousands (100,000s)

million (1,000,000)

order

ascending

descending

less than (<)

greater than (>)

We need to be able to use a number line and recognise where each number lies on a number line.

Unit 3 📴 **Addition and subtraction**

In this unit we will ...

- ✓ Add and subtract numbers with up to five digits
- ✓ Use the column method for addition and subtraction
- ★ Round numbers to estimate answers to problems
- ✓ Add and subtract mentally
- ✓ Solve problems involving addition and subtraction

What information does this comparison bar model give you? What can you use it to work out?

We will need some maths words. How many of these can you remember?

add subtract ones (Is)

tens (IOs)

hundreds (100s)

thousands (1,000s)

ten thousands (10,000s)

mentally

inverse

round

estimate

distance chart

Laying a calculation out neatly in columns can help us to understand the value of each digit.

Th	Н	Т	0
00	00000	0	00000
		00000	0000

In this unit we will ...

- ★ Recognise and find multiples and factors
- ★ Recognise and identify prime numbers
- ★ Calculate square and cube numbers
- ✓ Multiply and divide by 10, 100 and 1,000
- ★ Multiply and divide by multiples of I0, I00 and I,000

These are sorting circles. We will use them to help us find factors and multiples.

Factors of 20 Factors of 50

We will need some maths words. Look for the words you do not already know. What might they mean?

prime number

composite number

square number

cube number

square (x^2)

cube (x^3)

lowest common multiple

multiply

divide

multiple

factor

We will use multiplication squares too! They will help us spot patterns in the numbers we learn about!

×	1	2	3	4	5	6	7	8	q	10	Ш	12
1		2	3	4	5	6	7	8	q	10	Ш	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	q	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
q	q	18	27	36	45	54	63	72	81	90	qq	108
10	10	20	30	40	50	60	70	80	90	100	110	120
ш	Ш	22	33	44	55	66	77	88	qq	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Unit 5 🖆 Fractions 🕕

In this unit we will ...

- Find and use equivalent fractions
- Convert between improper fractions and mixed numbers
- ✓ Compare and order fractions

Do you remember what this model is called? We will use it to represent mixed numbers and improper fractions.

Can you tell which is which?

1/4	1/4	$\frac{1}{4}$ $\frac{1}{4}$		1/4	1/4	
	•	•				

We will need some maths words.
Do you know what they all mean?
Can you identify and explain the ones
you already recognise?

equivalent

numerator

denominator

whole] [1

fraction

improper fraction

mixed number

convert

order

greater than (>)

less than (<)

is equal to (=)

We will need to represent different fractions. What fractions are shown here?

Unit 6 Fractions 2

In this unit we will ...

- ★ Add and subtract fractions with the same denominator
- ★ Add and subtract fractions, including mixed numbers, where one denominator is a multiple of the other
- ✓ Solve word problems involving fractions

How can you add these two fractions?

We will need some maths words. Do you know what they all mean?

add subtract

proper fraction

improper fraction

convert

equivalent fraction

mixed number

denominator

numerator

whole

common denominator

We need to be able to convert between mixed numbers and improper fractions. Use your skills to convert $2\frac{1}{3}$ into an improper fraction.

